WIEVIEL PSYCHOLOGIE STECKT IN DER PHYSIK?

Wieso gilt eine wissenschaftliche Theorie eigentlich als richtig oder falsch? Wenn Sie glauben, dass es dabei nur darauf ankommt, ob physikalische Beweise oder Gegenbeweise vorliegen oder nicht, muss ich Sie enttäuschen. Das ist nur die halbe Wahrheit.

Den Rest finden Sie im Reich der Psychologie …

Anerkennung dringend gesucht!

Die Geschichte Einsteins Allgemeiner Relativitätstheorie beispielsweise ist voller Emotionen und spektakulärer Beweismittel – aber ob daraus die richtigen Schlüsse gezogen wurden, steht buchstäblich in den Sternen.

Als Einstein zwischen 1912 und 1915 im Ringkampf mit der Mathematik seiner berühmten Theorie Schritt für Schritt immer näher kam, war das eine enorme gedankliche Leistung – und harte Arbeit. Er schrieb: „Ich beschäftige mich jetzt ausschließlich mit dem Gravitationsproblem. Das eine ist sicher, dass ich mich im Leben noch nicht annähernd so geplagt habe. Rauchen wie ein Schlot, arbeiten wie ein Ross, Essen ohne Überlegung und Auswahl, Spazierengehen leider selten, schlafen unregelmäßig.“

Gegen Ende 1915 wurde der Stress umso größer, als Einstein klar wurde, dass der berühmte Mathematiker David Hilbert auf seine Ideen aufmerksam geworden war. Ab sofort war Einstein getrieben von der Angst, dass der brillante Hilbert ihm noch zuvorkommen könnte beim Aufstellen der Gleichungen, die später als „Einsteinsche Gleichungen“ in die Geschichte eingehen sollten.

Mit den Gleichungen war Einstein praktisch am Ziel. Er war von der Richtigkeit seiner Berechnungen überzeugt und konnte vor Herzklopfen nicht schlafen, als er mit seiner Theorie eine beobachtete Anomalie der Umlaufbahn des Merkur um die Sonne korrekt berechnen konnte. Aber dennoch stand noch die offizielle, allgemeine Anerkennung aus. Der Ritterschlag fehlte noch. Und den konnte damals nur die führende Institution von Wissenschaftlern jener Zeit, die Royal Society in London vergeben. Auch wenn vermutlich keiner der Mitglieder die Einsteinsche Relativitätstheorie überhaupt verstand!

Was fehlte, war jedenfalls eine unabhängige Bestätigung seiner Theorie, ein Beleg, der von der Royal Society anerkannt wurde. Etwa fünf Jahre lang versuchten mehrere Wissenschaftler, die Relativitätstheorie durch Messungen von Naturphänomenen zu belegen oder zu widerlegen. Z.B. durch die Messung der Ablenkung von Sternenlicht durch die Gravitation unserer Sonne. Das war jedoch nur bei einer totalen Sonnenfinsternis möglich.

Der Moment, ab dem Einstein recht hatte

Der erste Weltkrieg machte es damals nicht leicht, auf dem Globus umherzureisen, um geeignete Sonnenfinsternisse zu vermessen. Da wurden auch schon mal Wissenschaftler als feindliche Spione festgesetzt, weil ihre merkwürdigen Messinstrumente Verdacht erregten – so passierte es dem Astronomen Erwin Freundlich auf der Krim 1914!

Aber Ende 1919 war es dann soweit. Dem jungen britischen Physiker Arthur Eddington gelang eine Expedition zu den abgelegenen Orten Sobral in Brasilien und Principe vor der westafrikanischen Küste. Zunächst störte das schlechte Wetter die Messungen, nur ganz wenige glückten. Die Fotoplatten aber wurden anschließend von der Hitze des Klimas stark beeinträchtigt. Die Auswertung der Ergebnisse war darum äußerst diffizil – und leider gar nicht eindeutig.

Dann aber ließ Eddington ein den gewünschten Ergebnissen widersprechendes Foto einfach weg (erst im Nachhinein stellte sich dies als gerechtfertigt heraus) und so passte es ganz gut: Einstein hatte eine Ablenkung des Sternenlichts von 1,7 Bogensekunden vorausgesagt und etwa dieser Wert konnte nun aus den Messdaten herausinterpretiert werden.

Eddington reiste nach London und präsentierte seine Ergebnisse am 06.11.1919 vor der Royal Society. Die führenden Physiker der Welt waren anwesend, darunter auch der berühmte, 84-jährige Lord Kelvin.

Eddington machte seine Sache gut, er trat entschieden und überzeugend auf und referierte, dass seine Messungen die neue Gravitationstheorie von Einstein bestätigten. Diese Aussage hatte eine ungeheure Wirkung: Wenn Einstein recht hatte, galt im Universum nicht die Newtonsche Physik, sondern die Einsteinsche!

Alle Anwesenden waren sich der Dimension dieser wissenschaftlichen Umwälzung bewusst, und einige der älteren Koryphäen verweigerten prompt ihre Zustimmung, Lord Kelvin verließ sogar erschüttert den Raum. Doch die anderen reagierten enthusiastisch.

Am nächsten Tag titelte die New York Times: „Einsteins Theorie triumphiert“ – und darunter: „Sterne nicht dort, wo erwartet, aber niemand muss sich Sorgen machen.“

Ab diesem Moment hatte sich Einsteins Theorie durchgesetzt.

Psychologie entscheidet über richtig oder falsch

Dass die Messergebnisse damals durchaus anzuzweifeln waren? Egal. Dass die Überzeugungskraft der Ergebnisse ganz wesentlich von Eddingtons Präsentationskünsten abhingen? Ach, kommen Sie! Dass kaum einer die Theorie überhaupt verstand? Was soll’s! Und dass man bis heute die von Einsteins Theorie vorhergesagten und in der Natur gemessenen Ergebnisse auch ganz anders interpretieren kann, als es Einstein und alle anderen Wissenschaftler damals und auch bis heute tun? Geschenkt!

Anstatt nämlich die Ablenkung mit einer Raumkrümmung zu interpretieren, können Sie auch genauso gut eine variable Lichtgeschwindigkeit annehmen. Einstein selbst hatte diese Idee 1911 sogar erwähnt. Die Wissenschaft hat diese vielleicht beste Idee des 20. Jahrhunderts seitdem konsequent übersehen. Sie würde eine einfachere und logischere Interpretation der Allgemeinen Relativitätstheorie ermöglichen, die die kosmologischen Daten viel besser beschreibt. Aber seit dem Triumph in der Royal Society von 1919 interessiert das niemanden.

Denn die ganze Wahrheit ist: Ob eine physikalische Theorie als richtig oder falsch gilt, hängt im Wesentlichen von einem soziologischen und psychologischen Prozess unter den Experten ab.

Glauben Sie’s oder glauben Sie’s nicht!

DIE GESCHICHTE VON DER EXPANSION DES UNIVERSUMS

Manchmal glauben Forscher etwas nur deshalb, weil die Annahmen, auf denen dieser Glaube beruht, alt genug sind. Ein treffendes Beispiel ist die Idee der Expansion des Universums:

Als Einstein 1917 das Universum mit seiner allgemeinen Relativitätstheorie beschrieb, ging er selbst noch von einem statischen Universum aus. Die heute allgemein anerkannte Idee der Expansion kam erst später ins Spiel, nämlich durch den amerikanischen Astronom Edwin Hubble. Er interpretierte die damals neuen Messergebnisse, die nachwiesen, dass die Spektrallinien des Lichts von weit entfernten Galaxien ins Rote, also in Richtung größerer Wellenlängen verschoben waren, als eine Form des Dopplereffekts: Die Objekte müssten sich demnach von uns entfernen. Die Rotverschiebung war entdeckt und gedeutet. Und die Deutung lautete: Das Universum dehnt sich aus.

Expansion? Lasst uns mal nachmessen!

Als diese Annahme etwa 80 Jahre alt war, entdeckten Forscher eine bedeutungsvolle Ungereimtheit in ihren Messdaten: Durch die enorme Leistungsfähigkeit des fantastischen Hubble-Weltraumteleskops konnten in den 1990ern große Mengen der seltenen Supernova-Explosionen beobachtet und ausgemessen werden. Diese Phänomene lassen unter anderem relativ genaue Entfernungsmessungen zu. Sie geben uns also, grob gesprochen, die Gelegenheit, die Genauigkeit beim Vermessen des Universums erheblich zu verbessern. Die Forschergruppen, die das erreichten, erhielten völlig zu Recht 2011 den Physik-Nobelpreis.

Allerdings: Die Daten, die sie gesammelt hatten, stimmten überhaupt nicht mit dem allgemein akzeptierten Standardmodell der Kosmologie überein! Weit entfernte Supernovae leuchteten schwächer, als das Modell des expandierenden Universums voraussagte.

Also was tun? Es gibt zwei Möglichkeiten: Entweder vereinfachen oder verkomplizieren. Vereinfachen bedeutet: Da das theoretische Modell offenbar im Kern nicht stimmt, muss es hinterfragt werden, um ein Modell zu finden, das die Realität besser abbildet. Verkomplizieren bedeutet: Man fügt dem Modell einfach solange neue Gleichungen und theoretische Anhängsel hinzu, bis es wieder passt. Die meisten Wissenschaftler neigen in solchen Zweifelsfällen zur letzteren Methode. Auch wenn die Wissenschaftsgeschichte zeigt, dass sie selten Recht behalten.

Die Lösung liegt im Dunkeln

In diesem konkreten Fall hätte man im Sinne der Vereinfachung eigentlich die Interpretation der beobachteten Rotverschiebung als eine Art Dopplereffekt hinterfragen müssen: Stimmt es vielleicht gar nicht, dass im Universum eine Expansion stattfindet? Aber die Annahme war ja schon 80 Jahre alt, also konnte sie ja wohl nicht falsch sein!

Stattdessen fügten findige Wissenschaftler im Sinne der Verkomplizierung eine ominöse, „beschleunigende“ Kraft ein: Die Idee der „dunklen Energie“, die die Expansion des Universums verstärken soll, wurde eingeführt und in Mathematik gegossen. So stimmten die gemessenen Daten wieder ganz gut mit der Theorie von der Expansion überein. Auch wenn damit neue, mit nichts begründete, gleichsam „künstliche“ Konstanten in die Gleichungen eingefügt werden mussten und natürlich auch neue theoretische Fragen aufgeworfen wurden, an denen die Kosmologie heute noch knabbert.

Der Witz an dieser Sache ist: Die Messdaten stimmen hervorragend mit dem Modell eines Universums überein, das keinerlei Expansion erfährt, sondern statisch ist. Und die Theorie der Expansion fußt ja alleine auf der Interpretation der Rotverschiebung als Dopplereffekt „fliehender“ Materie.

Was wäre, wenn die Rotverschiebung eine ganz andere Ursache hat?

Diese Frage sollten wir stellen dürfen. Aber wenn Sie das tun, dürfen Sie eines ganz sicher erwarten: einen Sturm der Entrüstung!

Übrigens gibt es eine sehr plausible alternative Erklärung für die Rotverschiebung. Sie geht sogar auf Einstein selbst zurück und wurde 1957 von Robert Dicke ausformuliert. In meinem Buch „Einsteins verlorener Schlüssel“  erkläre ich diesen heute vergessenen Ansatz genauer.

NATURKONSTANTEN – EINE GEFÄHRLICHE LIEBSCHAFT

Heute muss ich Ihnen noch ein paar Illusionen über Naturkonstanten rauben. Ich bin ein echter Naturwissenschaftler und das ist auch schon das Problem: Man kann sich nicht damit zufriedengeben, Zahlen von der Natur „serviert“ zu bekommen, die nicht weiter begründet sind. Ein Naturwissenschaftler will sie verstehen, letztlich berechnen.

Klingt logisch? Ja, finde ich auch. Die Liebhaber der Naturkonstanten sehen das aber scheinbar anders.

Die Liebe zu Naturkonstanten

Über den Sinn und Unsinn von Naturkonstanten – von nicht berechenbaren, willkürlichen Zahlen – diskutierte bereits Albert Einstein in einem Briefwechsel mit der Philosophie-Doktorandin Ilse Rosenthal-Schneider (nein, mit ihr hatte er keine Affäre):

„Ich kann mir keine einheitliche und vernünftige Theorie vorstellen, die explizit eine Zahl enthält, welche die Laune des Schöpfers ebenso gut anders hätte wählen können.“

Sie können Einsteins Aussage auch so formulieren: Warum sollte die Natur einer x-beliebigen Zahl eine besondere Bedeutung zuordnen? Das wäre ja wie in der Liebe: Dich unter den Millionen anderen Menschen finde ich toll, einfach darum. Offensichtlich wäre dies irrationales Denken, das Einstein zuwider war.

Und damit war er nicht allein: Alle großen Physiker sahen die Notwendigkeit, die Liebe zu solchen Zahlenwerten zu hinterfragen. Paul Dirac verachtete geradezu alle Versuche, das Rätsel unter den Tisch zu kehren. Oft fragte er junge Theoretiker, die ihn mit neuen Ideen aufsuchten, nach dem Ursprung der Feinstrukturkonstante – nur eines von mehreren Beispielen für solch zufällige Naturkonstanten. Hatten die Nachwuchswissenschaftler sich damit noch nicht beschäftigt, schickte er sie konsequent – und reichlich lieblos – nach Hause.

Und auch Richard Feynman, Nobelpreisträger von 1965 und unangefochtene Ikone der Nachkriegsphysik, schrieb noch 1985 in seinem Buch QED: The Strange Theory of Light and Matter über denselben Fall von Naturkonstanten: „Alle guten theoretischen Physiker schreiben sich diese Zahl an die Wand und grübeln darüber nach.“

Ein schlechter Tag für Zeus

Das mag in Ihren Ohren nun reichlich anstrengend klingen. Sich nie ganz auf die Liebe zu Naturkonstanten einzulassen, stets weiter darüber nachzugrübeln, andere Ansätze zu suchen. Doch genau das macht Wissenschaft letzten Endes aus. Ein Akzeptieren von unerklärten Zahlen als „Naturkonstanten“ wäre eine Regression in vorwissenschaftliches Denken, im Grunde nicht weit entfernt von antiken Völkern, die unerklärte Phänomene den Launen der Götter zuordneten. Ein Blitz? Oooh Zeus muss heute einen schlechten Tag haben! Vielleicht hat er sich mit seiner Hera gestritten?

Dabei würde ich mir wünschen, dass Zeus wirklich mal einen richtig miesen Tag hat. Nämlich den Tag, an dem ein paar mehr Physiker kapieren, dass es ihre Aufgabe ist, den Blitz hinter Zeus zu erklären, nicht nur zu beschreiben.

Niemand mit wachem Verstand wird sich endgültig mit der Vorstellung abfinden, die Natur habe uns mit Zahlen der Art 137,035999… beglücken wollen, die prinzipiell nicht zu berechnen sind. Von diesen Prinzipien der Denkökonomie hat die gegenwärtige liebesblinde Physik jedoch leider ziemlich Abschied genommen.

Naturkonstanten, ich mach’ Schluss!

Die traurige Wahrheit ist nämlich, dass die Standardmodelle der Teilchenphysik und der Kosmologie heutzutage geradezu verknallt sind in Naturkonstanten. Dutzende (!) von unerklärten Zahlen werden darin schlicht akzeptiert – und bei all der Liebe auch noch sorgsam aufgebläht mit unerklärlichen Phänomenen wie der dunklen Materie, der dunklen Energie oder der „Inflation“. Zum Verständnis in der Wissenschaft tragen diese Konzepte allerdings allesamt nicht wirklich bei. Höchstens eben zur rosaroten Brille, mit der sich die Forscher alles schön zurechtbiegen …

Elementare Logik legt unter diesen Umständen den Verdacht nahe, dass wir eben etwas noch nicht kapiert haben – und es wäre wohl auch unangebrachte Hybris, diese Möglichkeit auszuschließen. Manche Liebesbeziehungen nehmen eben auch einmal ein Ende. Und ganz ehrlich, liebe Naturkonstanten, so richtig geklappt hat es zwischen uns doch schon länger nicht mehr, oder?

IM DUNKELN IST GUT MUNKELN

Die Physik könnte ruhig ein bisschen Poesie vertragen. Warum? Weil schon Johann Wolfgang von Goethe wahre Worte gesprochen hat, die von mir aus gerne in die Bildungs- und Forschungseinrichtungen weitergetragen werden können:

„Und denn, man muß das Wahre immer wiederholen, weil auch der Irrtum um uns her immer wieder gepredigt wird, und zwar nicht von einzelnen, sondern von der Masse. In Zeitungen und Enzyklopädien, auf Schulen und Universitäten, überall ist der Irrtum oben auf, und es ist ihm wohl und behaglich, im Gefühl der Majorität, die auf seiner Seite ist.“

Also wirklich: Auch die Physik könnte sich diese Weisheit Goethes zu Herzen nehmen.

Verrückt, verrückter, Nobelpreis

Denn was passiert, wenn die Masse der Menschheit die Wahrheit wiederholt, konnten wir in diesem Jahrhundert schon beobachten. Sie erinnern sich sicher: Der Nobelpreis für Physik 2011 wurde vergeben für die Beobachtung, dass sich die Expansion des Weltalls mit der Zeit beschleunigt. 1998 zeigte sich, dass die Expansion des Universums heute schneller abzulaufen schien als früher. Für diese Entdeckung und die dazugehörige raffinierte Methode teilten sich zwei Beobachtergruppen, die sich ein spannendes Wettrennen um entfernte Supernovae geliefert hatten, den Nobelpreis für Physik, durchaus zu Recht.

Angeblich erschien diese Erkenntnis den Forschern anfangs so verrückt, dass sie sie selbst nicht glauben konnten. Die Ursache der kosmischen Beschleunigung, nämlich die Dunkle Energie, gilt als vollkommen unverstanden. Wenn man es genau nimmt, handelt es sich eigentlich um eine Anomalie, die Zweifel an dem herkömmlichen Modell der Expansion nährt. Aber wirklich das ganze Modell in Zweifel ziehen? Dann doch lieber eine Reparatur …

Keine Abwehrkräfte

Die ganz große Überraschung, als die die beschleunigte Expansion heute gerne dargestellt wird, war sie im Übrigen gar nicht. Denn jeder wusste, dass die vorherigen Messungen der Hubble-Konstante nur dann ein Weltalter von 14 Milliarden Jahren ergaben, wenn man die momentane Expansionsgeschwindigkeit einfach in die Vergangenheit zurückextrapolierte – so, als gäbe es keine Wirkung der Gravitation. Das ist doch verdächtig. Finden Sie nicht auch?

Die Einführung der Dunklen Energie, die zur Erklärung dieser Beschleunigung herangezogen wurde, erhöhte die Gesamtmasse des Universums um ein Vielfaches. Nun ja, die Abwehrkräfte gegen die Verbreitung dunkler Theorien (vorher war ja schon die Dunkle Materie postuliert worden) in der Physik sind vielleicht nicht mehr so stark, wie sie mal waren. Ist ja auch klar: Im Dunkeln ist eben gut munkeln – leider auch in der Wissenschaft. Oder wie Erwin Schrödinger einst so schön sagte: „Ist das Problem erst mal durch eine Ausrede beseitigt, entfällt auch die Notwendigkeit, darüber nachzudenken.“

Immer mehr Dunkelheiten

Die dunkle Energie soll angeblich eine der Gravitation entgegengesetzte Wirkung haben. Newton wäre davon sicher nicht begeistert gewesen, dass nun 70 % des Weltalls abstoßend sein sollen und 95 % gleich ganz unsichtbar – eigentlich absurd. Daher ist für mich die Idee viel näherliegend, dass die Expansion selbst eine Illusion ist (und damit auch die Dunkle Energie) – siehe Kapitel 10 meines Buches „Einsteins verlorener Schlüssel: Warum wir die beste Idee des 20. Jahrhunderts übersehen haben“.

Die Verfechter der Standard-Kosmologie sind mit der Dunklen Energie dagegen zufrieden. Fragen Sie jetzt aber bitte nicht, wieso genau so viel dunkle Energie im Universum ist, dass sich ihr Effekt exakt zum gewünschten Verhältnis mit dem der Gravitation aufhebt. Das ist bisher völlig im Dunkeln geblieben.

Die dunkle Seite des Alls ist in den letzten Jahren erstaunlich groß geworden. Und die Theorien dazu sind noch dunkler als ihr Gegenstand. Da könnte ich glatt glauben, Darth Vader hat zurückgeschlagen.

AUSWANDERN IN DIE PARALLELWELT?

Etwas stimmt nicht in unserem Universum.

Wirklich, ich meine das ganz ernst. Immer wieder stoßen Physiker auf Messergebnisse, die nicht mit den Vorhersagen der bestehenden Theorien übereinstimmen. Für solche Fälle haben sie ihre Standardmodelle inzwischen mit zahlreichen Zahlenwerten – sogenannten Konstanten – verziert, die dann den Messungen angepasst werden können. Et voilà, die Welt stimmt wieder mit der Theorie überein.

Wenn das für Sie wenig überzeugend klingt, wird es Sie vielleicht beruhigen, dass auch in der Physik schon seit Längerem eine Debatte darüber entbrannt ist, wie es sein kann, dass das Universum über diese vielen Konstanten so wunderbar abgestimmt ist. Schließlich sprechen wir hier von Zahlen, die nichts erklären und scheinbar willkürlich vom Himmel gefallen sind.

Das fantastische Multiversum

Einen Ausweg will der Physiker Max Tegmark in seinem Buch „Our Mathematical Universe“ gefunden haben. Es handelt vom Multiversum, wie er es nennt. In seiner Vorstellung gibt es nicht nur ein Universum, sondern ganz viele. Jedes dieser Universen ist anders abgestimmt und folgt anderen Gesetzen. Solche, bei denen die Abstimmung nicht funktioniert, kollabieren. Unser Universum ist netterweise eines von denen, wo die Feinabstimmung ein Fortbestehen dieser Welt ermöglicht hat. Das führte, wie Sie wissen, sogar zur Entwicklung von mehr oder weniger intelligenten Lebewesen. Die Frage ist, ob Tegmark zu ersteren gehört.

Denn wir hätten es also mit einem natürlichen Auswahlverfahren für Universen zu tun. Da ist eben alles möglich – einfach fantastisch, wie sich handfeste physikalische Probleme in Luft auflösen, wenn nur ein findiger Geist sich damit beschäftigt.

Schade nur, dass wir nie nachprüfen können, ob wirklich etwas dran ist an dieser Multiversums-Idee, denn die anderen Universen sind ziemlich weit von uns entfernt, so dass wir noch einige Millionen oder Milliarden Jahre darauf warten müssten, bis die ersten Lichtquanten von ihnen bei uns ankommen. Nachgeprüft werden kann also mal wieder nichts.

Abenteuer oder Bodenständigkeit?

Was bleibt also von dem, was Tegmark oder auch andere Propheten wie Lisa Randall und Lawrence Krauss anbieten? Eine reichlich komplizierte und sehr spekulative Geschichte über die Entstehung und das Wesen dieser Welt, in der Sie leben. Die können Sie glauben oder auch nicht. Mitbewerber sind dabei zum Beispiel das wesentlich ältere, aber deutlich leichter zu verstehende 1. Buch Mose des Alten Testaments, die indischen Upanischaden und all die anderen Schöpfungsmythen, von denen ja jede Kultur mindestens eine hervorgebracht hat.

Eines haben alle diese Mythen gemeinsam: Sie sind nicht falsifizierbar und daher eine nie versiegende Quelle von Diskussionen, die zu nichts führen.
Wenn Sie allerdings Theorien wollen, die einen Teil dieser Welt messbar machen, erklären, wie er funktioniert, und so letztendlich auch technischen Fortschritt ermöglichen, wie zum Beispiel die Quantenphysik den Microchip, dann sollten Sie sich woanders umsehen. Albert Einstein kann Ihnen beispielsweise noch eine brillante Idee anbieten, die heute weitgehend in Vergessenheit geraten ist. Ich beschreibe sie in meinem neuen Buch „Einsteins verlorener Schlüssel: Warum wir die beste Idee des 20. Jahrhunderts übersehen haben“.

Aber ich muss Sie warnen: Gegenüber dem Multiversum wirkt diese Idee geradezu bodenständig und unspektakulär. Wer mehr Science-Fiction braucht, der sollte vielleicht in eines unserer Nachbaruniversen auswandern, wo die Feinabstimmung zu abenteuerlicheren Möglichkeiten geführt hat als in unserem Universum. Aber bitte vergessen Sie nicht, mir eine E-Mail zu schicken, wenn Sie angekommen sind.